Patrol, Detect, and Question: An Indoor Security
Robot

Dennis Chen
Dept. of Computer Science and
Computer Engineering
HKUST
Hong Kong SAR

Peerawas Archavanuntakun
Information and
Communication Engineering
Chulalongkorn University
Bangkok, Thailand

Guilherme Sato
College of Electrical Engineering
Campinas State University
Brazil
Email: guilhermesato.unicamp @ gmail.com

Email: dchenam@connect.usthk Email: peerawas.a@student.chula.ac.th

Abstract—We present a security robot that demonstrates the
basic functions that a human security guard would perform,
specifically patrolling a set location, the ability to accurately
detect another human, and a natural language interface to
uncover the intruder’s identity. The robot could serve as a cheap
form of security for buildings o a human guard’s assistant to
cover a wider area. To demonstrate these functions we used the
Pioneer P3-DX, Hokuyo laser scanner, and a laptop as the camera,
microphone, and speaker. For the software, we used ROS, Google
Cloud Speech API, Baidu’s Text to Speech API, and YOLO.

Keywords—Security, ROS, YOLO, Robotics, Speech Recogni-
tion.

I. INTRODUCTION

Robots have become increasingly utilized in replacing hu-
man tasks that are either too difficult, repetitive, or dangerous.
Whether it is collecting samples on mars or repetitively picking
packages, the applications are endless. Targeting the security
market, our group decided to create a prototype security robot
to mimic the tasks of a human security guard. It could serve
as a weak, but cheaper form of security, or as an assistant for
human security guards to cover a large radius using sensors
unavailable to a human e.g. thermal imaging cameras, laser.
The basic tasks we would like to cover are patrol an area, detect
humans only, and question any intruders. Part of this project is
not only to create an demo for class project, but also to learn
many aspect of robotics projects and applications. Therefore,
we used Robot Operating System (ROS) with commodity
hardware part rather than specific specialize software for
specific completed package robot.

II. RELATED WORK

From Navigation and Mobile Security System of Home
Security Robot[2], a intelligent security architecture in robot
(ISR) is developed. In this paper, a model of what security
robot can be seen. The two most important aspect gathered
from this paper is the obstacle avoidance system and the
security system. Audio Interaction is also particularly impor-
tant in home security robot to make to robot feels friendly
and less intrusive. Because our goals is similar, our robot
principle share some similarity. On the other hand, thanks to
the technological advances in sensor, robotics, and computer,
our products provide much more accurate object and person
detection, as well as much smoother audio interaction.

In Localization and navi-gation of a mobile robot in an
office-like environment[4], a P3-DX is also used as mobile
robot for navigation in indoor environment. Their work use
only a web cam for localization which made it really compact
and cost effective but at the same time heavily rely on
landmarks in the area such as light fixtures. The interesting
part is how they use particle filter probabilistic methods to
localize the position of the robot when there is no information
about the starting location of the robot. In our work, we use
Monte Carlo localization as well as its been shown and proven
to be very effective method.

III. METHODOLOGY

A. Hardware

Fig. 1: Assembled form

The hardware components we choose to prototype our
security robot are the Pioneer P-3DX, the Hokuyo URG-

LX sensor, and we used an ASUS UX501VW laptop as
the speaker, microphone, and web camera. We chose these
components because they were the only equipment available to
us at the time, and we decided to omit the usage of a Microsoft
Kinect, because we faced configuration issues.

Fig. 2: Hokuyo URG-LX

B. Software

For the software architecture of the robot, we decided to
use ROS because it allows for parallel peer to peer commu-
nication among different independent processes called nodes,
where data can be asynchronously communicated using a pub-
lisher/subscriber model. The framework is inherently object
oriented which abstracts away many low level details and
reducing the complexity of understanding the robot system as
a whole. Each node is encapsulated and with only an interface
that communicates with other nodes via a message topic. This
decentralized system allowed for rapid prototyping and a lot of
flexibility, allowing for quick switching of subsystems without
the need to reconfigure other processes. One example is for the
ID recognition, we were able to rapidly experiment between
face recognition, traditional OpenCYV id card segmentation, and
Zbar, which we decided to use in the end. Another advantage
in ROS is the integration of other libraries like OpenCV
and its big open source communities which contributed many
packages like gmapping and the navigation stack.

Computer on the Robot

ROS
Master

Processing

|
|
|
|
|
|
|
|
|
| Display
|
|
|
|
|
|
|
|
|

Subscribe

/image_data ‘

J Publish
Camera

Message

Fig. 3: example of ROS nodes

For the patrolling task, we used slam with gmapping
integrating the laser data from the Hokuyo and the odometry
from the pioneer. After creating a map of the desired area

to patrol, we then used Adaptive Monte Carlo Localization
to localize the robot within the map. Using the Move Base
Package from the navigation stack the robot was able to easily
move between set locations in simulation and the physical
robot. In the future, we would want to experiment with Hector
SLAM or Google Cartographer to see if better maps can be
created.

Fig. 4: example of map created

To detect an intruder, we experimented with two different
techniques, Histogram of Oriented Gradients(HOG) and the
YOLO algorithm trained on the MS-COCO data set, which
includes the person class. We found that HOG was good at
finding faces, but performed poorly when only shown partial
parts of a person. The other algorithm we experimented with is
YOLO, which is an algorithm that utilizes convolutional neural
networks to divide an image into a grid with multiple grid cells.
Each cell is then given two bounding boxes with confidence
scores, and conditional class probability. Where confidence is
defined as the probability of an object * Intersection Over
Union/IOU of the predicted box and ground truth label box.
This model has several benefits over traditional object detec-
tion algorithms such as being extremely fast, it reasons globally
when making predictions, and is highly generalizable so it is
less likely to breakdown when presented with new domains or
unexpected inputs. For these reasons, we decided to use it for
detecting intruders. In fact, YOLO is also much more versatile
in that it can detect different types of objects, which can be
expanded upon to detecting a person wielding a dangerous
objects like guns or knives. Future works can expand upon this
flexibility to create a more secure robot that could recognize
a dangerous intruder and act accordingly before questioning
them.

To confirm the intruder’s identity with dialogue, we inte-
grated several cloud APIs such as Google Speech, Baidu’s
Text to Speech, and DialogFlow to facilitate dialog, and
experimented with several programs for identity verification.
We chose Google’s cloud speech API because it was the most

Fig. 5: YOLO algorithm in action

accurate compared to pocketsphinx or Bing’s speech API.
Baidu’s TTS was the best at pronouncing Chinese words, and
Google’s DialogFlow allowed variant replies in addition to
analyzing an intent when compared to Facebook’s Wit.ai. To
recognize an intruder, the initial idea was to use OCR to be
able to recognize the card and process the image in OpenCV. It
recognizes patterns close to each other, therefore recognizing
letters and bound them together (bounding rectangles). Then,
the image was thresholded and cropped so the OCR would be
able to recognize the letters and numbers. The implementation
worked; however, we faced a problem where the OCR program
takes too long process each frame, which made the recognition
system really slow and ineffective for our application. We
decided then to use a simple bar scanner called zbar, which
publishes the content from the bar scan. Another method
experimented with is face recognition, but we found it to be
slightly too slow for a streamline experience.

Fig. 6: ID recognition node

IV. EXPERIMENTAL SETUP

We set up the nodes to start together as a ROS launch file
and tested most of the components beforehand in simulation
using Gazebo. First, we tested if the SLAM worked with
correct odometry transformation and laser scan input. Next,
we cleaned up small smudges in the map using GIMP, because
they interfere in the cost map calculation later on. For the
localization and movement we used AMCL to localize the
robot and the move base package from the ROS navigation
stack. The move base package enables automatic trajectory
calculations based on a global cost map from the obstacles

displayed from the previously created map and a local cost
map that detects new unseen obstacles, like a person, from
laser scans. We initially planned to have the robot follow
an intruder based on laser scans alone trained on people leg
patterns, but we discovered that it wasn’t stable enough to use
without including camera depth information from a Kinect.

Fig. 7: Pioneer in Gazebo

We used pretrained weights downloaded online to use for
the YOLO person detection module and configured it so that
the robot will stop moving when it detects a person. It would
then initialize the dialog node which uses Google’s Speech
API, Baidu’s TTS, and Dialogflow to demand the detected
person to provide identification at another computer terminal.
The reason we used another computer terminal as the barcode
scanner described in the software section is that zbar proved
extremely difficult to use and was incompatible with the ASUS
UX501VW’s web-cam.

I ‘webcamwebcam stream !

Fig. 8: Graph of the ROS nodes using RQT

V. RESULTS

The results are shown in an annotated video in the link
below. The robot worked as functioned but still has much room
for improvement. One of the most noticeably one is the user
interface. Even though the laptop has fully functioned graphic
and audio feedback already, that’s only the case when every
element of the stack is already been setup. Setting one up still
required some understanding of the system in order to start
and connect them together as we haven’t create a unify start-
up interface yet but rather a bash script that will load up ROS,
necessary node, and configuration files. Overall, we were able
to utilize many facets of robotics like SLAM, computer vision,
and ROS, and learned about the importance of teamwork.

VI. DEMO
https://youtu.be/C2pY GdFkoqg

VII. CONCLUSION

The experience of creating a robot together was wonderful.
Unfortunately one of our team members disappeared halfway
into the semester and we couldn’t reach all of our initial
expectations for the project. Despite the many hurdles we faced
in communication and teamwork, we believe that everyone got
to learn something out of this experience.

ACKNOWLEDGMENT

33% - Guilherme Sato camera vision system

33% - Peerawas Archavanuntakun navigation and path plan-
ning system

33% - Dennis Chen team leader, speech recognition, and
SLAM

REFERENCES

[1] Gapark Marek and olek Peter, Design the robot as security system in the
home, MMaMS 2014

[2] Ren C. Luo, Po K. Wang, Yu F. Tseng and T. Y. Lin, Navigation and
Mobile Security System of Home Security Robot, IEEE International
Conference on Systems, Man and Cybernetics, 2006

[3] Zeng Dehuai, Xie Cunxi and Li Xuemei, Design and implementation of
a security and patrol robot system, IEEE International Conference on
Mechatronics and Automation, 2005

[4] Paulo Alves, Hugo Costelha and Carlos Neves, Localization and navi-
gation of a mobile robot in an office-like environment, 13th International
Conference on Autonomous Robot Systems (Robotica), 2013

[5S] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look
Once: Unified, Real-Time Object Detection, 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016,
pp. 779-788.

